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1. Introduction

The paradigm of “buffering” emerged roughly one hundred
years ago as biochemists and physiologists were working out
the fundamentals of acid–base chemistry. They had observed
that certain solutions responded to the addition of acid or
base by much smaller changes of acidity than did pure water
or saline solution.[1] Moreover, different solutions exhibited this
“resistance to change” to different extents. To express that
quantitative aspect of buffering action numerically, various
“buffering strength units” were proposed, for example, by Hen-
derson, Koppel and Spiro, Van Slyke, and Michaelis.[1–5]

Over the 20th century, the paradigm of buffering gained
popularity in many further disciplines, well beyond its original
domain of acid–base chemistry. A literature search with “buf-
fering” as the search term will strikingly illustrate that point. It
will return numerous relevant articles, including many recent
ones, that are related, for instance, to the buffering of electro-
lytes other than the H+ ion (e.g. “magnesium buffering”, “calci-
um buffering”[6–17]), of nonelectrolytes (e.g. “oxygen buffering”
by hemoglobin and myoglobin[18,19]), or of thermodynamic
quantities (e.g. “redox buffering”, “thermodynamic buffer en-
zymes”, or “metabolic capacitance”[20–23]).

Importantly, the buffering paradigm is also invoked—with
increasing frequency—by “systems biologists”. For instance,
buffering terminology is applied to classical physiological feed-
back-control mechanisms. “Blood-pressure buffering” and “au-
toregulation” stabilize pressure and organ perfusion against
disturbances such as fluctuating cardiac output and peripheral
resistance.[24–30] Another example is the recent concept of “phe-
notypic” or “genetic buffering”, introduced by evolutionary bi-
ologists. Mechanisms such as negative feedback or redundancy
are said to minimize or abrogate the effects of genetic muta-
tions on the phenotype, thus decreasing the impact of individ-
ual genes on fitness and selection.[31–33] Moreover, ecologists
study the “buffering” of animal populations in predator–prey

systems, and systemically inclined sociologists and psycholo-
gists employ concepts such as “stress buffering”, “social buffer-
ing”, or “cognitive buffering”.[34–37]

In addition, the buffering paradigm seems to be in place in
the context of further regulatory processes in which it has not
been invoked explicitly. For instance, signal transduction at
synapses is shaped largely by the mechanisms that decrease
the concentration of free transmitters following their triggered
exocytosis. Herein, binding to neurotransmitter transporters
occurs with much higher speed and efficiency than actual re-
uptake. The proteins involved in transmitter binding have
been fittingly termed “decoy receptors”, but their action is still
awaiting a quantitative description. Analogously, hormone
binding to specific binding proteins represents an important,
actively regulated aspect of endocrine signaling through lipo-
philic hormones. Similarly, intracellular signaling through
second messengers such as inositol phosphates, a focus of cur-
rent research in systems biology, is modulated by binding of
these messengers to cytoplasmic factors. Another example is
the regulation of oxygen levels in tissues or organisms; herein,
oxygen binding to proteins such as hemoglobin or myoglobin
contributes to stabilizing free oxygen levels during exercise or
diving, at times even to a greater extent than does vasomo-
tion. In all these cases, no suitable framework exists to capture
the “buffering effect” of these binding processes.

Apparently, “buffering” is, actually or potentially, an intuitive
and useful concept in systems biology, as well as in many
other disciplines. However, the increasing popularity of the
buffering paradigm also confronts us again, and more press-
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ingly, with the considerable inherent shortcomings of that con-
cept—most importantly, the lack of a single, universally appli-
cable definition of buffering. Consequently, we also lack a
single, rigorous, commonly accepted scientific unit for the
quantitation of buffering action. For instance, in the field of
acid–base buffering, a majority of scientists have adopted
Van Slyke’s unit b=d[strong base]/dpH as a quasi-standard;[3]

whereas in the field of Ca2+ physiology, buffering is more com-
monly expressed in terms of the “calcium binding ratio” k,
with k=d[Ca2+]bound/d[Ca

2+]free.
[13] For both types of buffering,

several further “buffering strength units” exist. The result is a
parallel use of multiple units; this is problematic inasmuch as
the different units produce qualitatively and quantitatively dif-
ferent conclusions. Another problem causes trouble in different
areas of research, namely the use of a buffering paradigm
without having any buffering strength unit (e.g. in the field of
blood-pressure buffering). The lack of quantitative measures of
buffering leads to vague, essentially metaphorical semantics of
the term “buffering”. Second to none in this respect, contem-
porary systems biology applies the buffering paradigm light-
heartedly although it is equipped neither with a clear concept
of “systems-level buffering” nor with an explicitly defined buf-
fering strength unit. It shares this deficit with the more gener-
al, mathematical, or engineering varieties of systems and con-
trol theory.

In order to formulate, test, and interpret quantitative propo-
sitions, however, it is clearly vital to have a coherent, unambig-
uous system of basic and derived scientific units. The epitome
of such a system is the “SystCme International d’UnitEs”, which
is at the core of the most mature natural sciences. Lord Kelvin
noted: “When you can measure what you are talking about
and express it in numbers, you know something about it.”
Conversely, without a quantitative concept of “systems level
buffering”, the buffering paradigm in systems biology must
remain flimsy in theory and unproductive in practice.

I have presented elsewhere a formal and general concept of
“buffering”.[38–39] This concept comes with a dimensionless unit
of “buffering strength”. The first of these articles[38] presents a
detailed discussion of the problems that arise from the use of
multiple incommensurate measures of buffering action, where-
as the second article[39] provides analyses of several classical
buffering phenomena and demonstrates the advantage of the
unified concept as compared to other approaches.

The formal and general concept is universally applicable and
also offers, in principle, a way to get a numerical grasp of sys-
tems-level buffering. The present article fleshes out this specif-
ic aspect of the general concept, and presents explicitly cus-
tomized terms and definitions that can turn the general con-
cept into a handy mathematical tool for systems biologists. For
the systematic theoretical foundation of the general concept,
and for exemplary treatments of various other types of buffer-
ing that are of interest to chemists (e.g. H+ buffering by weak
acids or bases, H+ buffering in pure water, or redox buffering),
the reader is referred to other articles.[38–39]

2. Buffering Can Be Quantitated in Terms of
Proportions between Partial Flows in a Two-
Partitioned System

The key to the formal and general concept of buffering is to
view the underlying phenomenon as a partitioning process
(specifically, of one given quantity into two complementary
compartments), and then describe it in terms of the propor-
tions between the flows into the individual compartments.
This approach is illustrated in Figure 1.

For instance, in the case of classic H+ buffering, the quantity
in question is the total concentration of H+ ions in a solution,
and the complementary compartments correspond to the indi-
vidual concentrations of “free” and “bound” (that is, “buffered”)
H+ ions. Let us take total H+ ion concentration as independent
variable x, and the corresponding equilibrium concentrations
of free and bound H+ ion as dependent variables y and z.
Transitions between various equilibrium states of such a two-
partitioned system involve changes of the independent vari-
able (Dx), and well-defined associated changes of the depen-
dent variables (Dy, Dz). We designate by the term “transfer
function” the function x!y(x), and by “buffering function” the
function x!z(x). Accordingly, at a given value of x, the cou-
pling between independent and dependent variables is charac-
terized by two differentials, namely a “transfer coefficient” t
given as

t ¼ dy
dx

¼ dðfreeÞ
dðtotalÞ

and by a “buffering coefficient” b given as

b ¼ dz
dx

¼ dðboundÞ
dðtotalÞ

Figure 1. Buffering can be viewed and formalized as a partitioning process. For
instance, H+ ions in an aqueous solution (x) can exist either in a free (y) or
bound (z) form. A change of total H+ ion concentration (Dx) is translated par-
tially into a change of free H+ ion concentration (Dy), and partially into a
change of bound H+ ion concentration (Dz). The greater the partial change Dz
relative to the total change Dx, or relative to the complementary change Dy,
the greater the buffering of the variable y in this system. Buffering strength can
thus be expressed either by the dimensionless differential (“buffering coeffi-
cient”) on a scale from 0 to 1, or by the dimensionless differential dz/dy=B
(“buffering odds”). Buffering odds B yield an absolute ratio scale, that is, a scale
with equal intervals and an absolute zero that does not require any arbitrary
proportionality factors.
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These coefficients can be thought of as the “fractional flows”
into (or out of) the compartments of a two-partitioned system
that are observed in response to a net flow into (or out of) the
system at a given operating point x.

The greater the flow into the second “buffering compart-
ment”, the greater the “buffering strength” of the system. One
way to express the magnitude of this flow (that is, the magni-
tude of buffering strength) is the proportion between “a part
and the whole”; here, the proportion between partial flow into
the “buffering compartment” and total flow into the system.
This proportion is given by the buffering coefficient b ; it re-
flects buffering strength by a dimensionless number between
zero (no buffering) and unity (perfect buffering). For instance,
intracellular Mg2+ ions are buffered with a buffering coefficient
of b�0.6. This means that ~60% of Mg2+ added to the cyto-
plasm will be bound by buffer molecules. Thus, the buffering
of Mg2+ is very weak compared to the cytoplasmic buffering
of H+ ions. Doubling the concentration of Mg2+ buffers will in-
crease the buffering coefficient from 0.6 to 0.75.

Alternatively, the magnitude of this flow can be expressed in
terms of the proportion between the two individual parts of a
whole; here, the proportion between the partial flows into the
“buffering compartment” and the “transfer compartment”. This
proportion, here referred to as “buffering odds” B, is given as a
ratio B=b/t or, equivalently, as a derivative B=dz/dy. In con-
trast to the buffering coefficient b, the buffering odds B reflect
buffering by a dimensionless number between zero (no buffer-
ing) and positive infinity (perfect buffering). For instance, intra-
cellular Ca2+ is buffered with buffering odds of B=75. This
means that 75 times more added Ca2+ ions will be bound
than will remain free, or the proportion bound: free among the
added H+ ions equals 75:1. In other words, it takes 76 addi-
tional free Ca2+ ions to retain 1 additional free Ca2+ ion after
reaching the new equilibrium. Doubling the concentration of
Ca2+ buffers will simply double the buffering odds.

Buffering coefficient and buffering odds carry exactly the
same information, but have different mathematical properties.
Buffering coefficients behave exactly as the familiar “probabili-
ties” or “relative frequencies”. In contrast, buffering odds
behave like the SI units (e.g. for length, mass, or time), which
all yield ratio scales, the highest possible type of a scientific
scale. As additional advantages, the buffering odds are dimen-
sionless and absolute (i.e. , the numerical value can be inter-
preted unambiguously, because it involves no choice between
different units such as meters or yards or inches). The meaning
of buffering coefficients and odds can be understood in a very
straightforward and intuitive way (in terms of fraction or per-
centage that is buffered, or in terms of the number of addi-
tional buffered elements for every additional unbuffered ele-
ment), without loss of formal correctness. In contrast, a H+

buffering strength of b=24 mm/pH according to Van Slyke’s
unit relinquishes the more intuitive numbers (such as the
number of H+ ions one needs to add to get one more perma-
nently free H+ ion) only after spiny mental arithmetic, and
the popular visualization stating that 24 mmoles of strong acid
will shift the pH of this solution by one unit is patently incor-
rect.

With these measures of buffering, we are already in a posi-
tion to describe all classical buffering phenomena, such as the
“self-buffering” of H+ by pure water, and H+ buffering by a
mixture of a weak acid and one of its salts. Example analyses
(with some surprising conclusions) have been presented else-
where in detail,[39] together with further examples showing
that these measures allow the buffering paradigm to be ap-
plied directly to phenomena that involve quantities other than
ion concentrations (e.g. , heat energy or redox equivalents). In
exactly the same way, one can treat all other nonclassical buf-
fering phenomena that involve the binding of a conserved mo-
lecular species, including the examples mentioned above (e.g. ,
the buffering of hormones, transmitters, or oxygen).

3. Buffering in Nonconservative Systems

Importantly, the phenomena considered so far all obeyed a
conservation law: the sum of the partial flows into the individ-
ual compartments equaled the total flow into the system. Con-
servation resulted from physical or chemical constraints. From
a mathematical point of view, we may drop this constraint
with impunity. One the one hand, this generalization allows us
to describe systems that are conservative by nature in alterna-
tive “parametric” form. For instance, we could express bound
and free H+ ion concentration as a function of “grams” or “mil-
liliters” of a strong acid, instead of “moles” of strong acid. On
the other hand, and more importantly, it allows us to deal with
functional relationships between completely heterogeneous
physical quantities, and to apply the buffering concept to this
class of phenomena. This approach is illustrated in Figure 2.

For example, the volume flow f8 in a rigid tube is a linear
function of the pressure difference DP across it ; here flow and
pressure have different physical dimensions of length3L time�1

versus massL length�1L time�2, respectively. The response of
the system to pressure changes is given by the differential
df8/d(DP)and is equal to the hydraulic conductance L8 of the
tube. If we add another such tube in series, it will draw off half
of the available pressure difference, and the response of

Figure 2. Partitioning in nonconservative two-partitioned systems. Buffering of
volume flow (f) against changes of perfusion pressure (Dp). Upper panel : zero
buffering: changes of pressure difference are completely translated into
changes of volume flow, with the hydraulic conductivity L8 as proportionality
factor. Middle panel : a second vessel diminishes the effect of pressure changes
on volume flow in the red tube, the latter quantity is now “buffered”. The
extent of buffering can be expressed again by dimensionless buffering coeffi-
cients or buffering odds (see Figure 1 and text). Bottom panel : similarly rigorous
quantitation of buffering is possible if hydraulic conductance does not have a
constant value L, but a variable value LP that depends on pressure P. Then, sim-
ilarly, the buffering coefficient is not constant, but a variable bp of pressure.

1386 < 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chembiochem.org ChemBioChem 2004, 5, 1384 – 1392

B. M. Schmitt

www.chembiochem.org


volume flow f to pressure changes will be smaller than L8,
namely:

L ¼ df
dðDPÞ ¼

Lo

2

We can say that the hydraulic series resistance contributed by
the second tube “buffers” the effect of a given pressure
change on volume flow in the first vessel. Our question here is,
how can we derive a quantitative measure of buffering in such
a context from this formal description? Incidentally, this is al-
ready a systems biology question. Organisms with a blood cir-
culation employ this basic strategy to stabilize organ perfusion
in the face of fluctuating perfusion pressure. So far, no satisfy-
ing unit has been presented for the quantitation of such
“blood-pressure buffering”.

For conserved quantities, “total change” was equal to the
sum of the two “partial changes”. Here, however, we find that
dependent versus independent variables are of different physi-
cal dimensions; we therefore speak of a “nonconservative” par-
titioned system. To extend our definition of buffering strength
to nonconservative systems, we first introduce the notion of a
“sigma function”. The sigma function of a two-partitioned
system is the function whose value equals the aggregate value
of the two partial functions, or s(x)=y(x)+ z(x). Conservative
systems are characterized by the equality x=y(x)+z(x), which
simplifies the sigma function to s(x)=x. In the special case of
z(x)=0, equivalent to the complete absence of buffering, the
sigma function becomes equal to y(x). Thus, the sigma func-
tion tells us how the system would respond if it were not buf-
fered. We can normalize the partial flows with respect to this
unbuffered system response, and thus obtain general defini-
tions of t and b that make sure that our measures of buffering
are always dimensionless. To this end, we denote the deriva-
tives of the functions with respect to the independent variable
x by y’, z’, and s’, and rewrite the relationship given above in
more general form as:

t ¼ y0
s0

b ¼ z0
s0

therefore

t þ b ¼ y0 þ z0
s0 ¼ 1

In our hydraulic example, we regarded the situation involving
only a single tube as an “unbuffered system”. The correspond-
ing sigma function is:

sðxÞ $ foðDPÞ ¼ Lo 
 DP

The derivative s’ then assumes the specific physical meaning
of a hydraulic conductance L8=df8/d(DP). Nonzero buffering
manifests itself as an observed hydraulic conductance Lobs that

is smaller than L8. The sigma function s :DP!L8·DP allows the
transfer coefficient to be computed as:

t ¼ y0
s0 ¼

Lobs
Lo

This transfer coefficient, in turn, unambiguously determines
the other buffering parameters: b=1�t and B=b/t.

With these buffering parameters at hand, we can now talk
meaningfully and unambiguously of “buffering” in the context
of pressure-dependent volume flows, and we can rigorously
express the appropriate “buffering strengths”, either as buffer-
ing coefficient b or buffering odds B. One application of these
units in systems biology is the quantification of “blood-pres-
sure buffering” or “autoregulation” of blood flow in the face of
variable arterial pressure.

More generally, these parameters express numerically how
much an observed change deviates from the “reference” effect
seen under conditions of zero buffering. In other words, b and
B are the wanted measures of “resistance to change” in an ar-
bitrary two-partitioned system (i.e. , of one transfer function
and one buffering function, representing the dependence of
one state variable, each, in transfer and buffering compartment
on a single independent variable of potentially different physi-
cal dimension).

By the same token, one can talk meaningfully of “conduc-
tance to change” in such a system. Conductance to change, in
turn, can be quantitated with similar rigor, either by the trans-
fer coefficient t and by so-called “transfer odds” T, with T= t/b.

4. Buffering, Resistance to Change, and
Disturbance Rejection in Control Systems

Next, we need to apply our measures of “resistance to change”
and “conductance to change” to control systems. This is illus-
trated by using a simple control system with proportional
feedback (Figure 3A). The system is characterized by a set-
point input S, a disturbance input D, and an output Y; a con-
version factor K accounts for different physical dimensions or
scales of inputs versus outputs. However, the measures of “re-
sistance to change” or “conductance to change” do not
depend on the particular system design (proportional–inte-
gral–differential feedback, digital vs. analogue, etc.) and are
generally applicable to control systems with set-point and dis-
turbance inputs, and one output.

All control systems should satisfy two fundamental require-
ments. Firstly, they should follow faithfully any changes of the
desired set-point ; this feature is called “set-point tracking”. Sec-
ondly, control system should respond as little as possible to
any other parameters, perceived as “disturbances”; this feature
is therefore called “disturbance rejection”. Set-point tracking as
well as disturbance rejection may be present to a greater or
lesser degree, ranging from “perfect” to “completely absent”.
To emphasize the quantitative nature of these two fundamen-
tal properties of control systems, we here call them “set-point
tracking power” and “disturbance rejection power”, by analogy
to the familiar concept of “buffering power”.
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Control can be poor or very efficient. However, “control
quality” has multiple aspects, and cannot be characterized
comprehensively by a single figure. Nonetheless, set-point
tracking and disturbance rejection reflect the most important
aspects of control quality. In a first approach to the quantita-
tion of control quality, we focus on the time-independent
steady states, ignoring for now the different speed with which
systems can respond to changes of set-point or disturbance
inputs. To characterize these “static” control properties, we
thus need measures of “static set-point tracking power” and of
“static disturbance rejection power”.

To apply our general definitions of the buffering coefficient
b and the buffering odds B to the analysis of feedback-control
systems and obtain a measure of “static disturbance rejection
power” in this context, one starts ideally from the explicit
mathematical description of the system. For this simple system
(Figure 3A), an analytical solution is available for the complete
state space; namely, the steady-state output Y is determined
by both inputs according to:

YðS,DÞ ¼ K

�
S

A
A þ 1

þ D
1

A þ 1

�

From this equation, the sensitivity YD’= [@Y(S,D)]/@D of the
output Y to a change of the disturbance input D can be calcu-
lated as:

Y 0
D ¼ K

1
ðA þ 1Þ

Thus, with small feedback gain A, a change of the disturbance
input D will translate almost completely into an change of the
output Y. In the limiting case of A=0, the sensitivity of the
system to disturbances assumes a maximum value of YD’=K.
The same sensitivity is obtained by cutting open the feedback
loop. In contrast, when feedback gain A is high, the output Y
responds to a changed disturbance input D with only a frac-
tion of its maximum sensitivity. In the limiting case of A!¥,
the output Y becomes completely insensitive to disturbances.

Thus, the negative-feedback mechanism conveys to the
system a “resistance to change” in the face of an external dis-
turbance D. Synonymously, control theory talks of “disturbance
rejection”, in this case, of “static disturbance rejection”. Equiva-
lently, we may say that the negative feedback “buffers” the
effect of the disturbance input D on the output Y.

Knowing the state space of a system and the sensitivity YD’
of the output to a disturbance input is a necessary step
toward a quantitative expression of “disturbance rejection”.
However, sensitivity YD’ does not constitute of itself a direct
measure of disturbance rejection. Firstly, its value varies inver-
sely with disturbance rejection. Secondly, its scaling and physi-
cal dimensions are contingent on the particular control system
(given by the conversion factor K). To obtain a better measure
of this quantity (namely, a direct, general, and dimensionless
one), we need to derive a “buffered system” from the above
mathematical representation. In other words, we need to
define a transfer function, a buffering function, and a sigma
function in this control system.

We say the system has “zero disturbance buffering” when a
disturbance D is not rejected at all, but impacts fully on the
output Y; in the system shown in Figure 3, this was the case if
A=0 or with the feedback loop cut open, and was associated
with an open-loop sensitivity Y

o

D’=K. This unbuffered response
is now described, as in the examples above, by the sigma func-
tion, and written in general form as sD:(S,D)!Y*D(S,D). Here,
we obtain sD(S,D)=K·D.

The transfer function is then the function that describes the
relation between inputs S,D and output Y for any actual value
of A2R, written as tD:(S,D)!Y(S,D). Here, we found:

tDðS,DÞ ¼ K

�
S

A
A þ 1

þ D
1

A þ 1

�

and

t0D ¼ Y 0
D ¼ K

A
A þ 1

What is missing is the buffering function. Its value cannot be
read out anywhere from the system, but we can compute its

Figure 3. Static disturbance rejection and set-point tracking in feedback-control
systems. A) Generic negative-feedback-control system. Dual input–single output
system (D, disturbance input; S, set-point input; Y, output) with proportional
gain (A, real-valued gain factor). � symbolizes an element whose output is the
sum of its inputs. Square boxes symbolize elements whose output is the prod-
uct of their single input and the figure shown inside the box. A conversion
factor (K, product of a real number and a scientific unit) accounts for scaling
and potentially different physical dimensions of inputs versus output. B) Turning
a feedback-control system into a two-partitioned system that is suited to mea-
sure “disturbance rejection power”. C) Turning a feedback-control system into a
two-partitioned system suited to measure “set-point tracking power”.

1388 < 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chembiochem.org ChemBioChem 2004, 5, 1384 – 1392

B. M. Schmitt

www.chembiochem.org


value from the equation s(x)=y(x)+z(x), which characterizes
all two-partitioned systems. Thus, we obtain:

bDðS,DÞ ¼ sDðS,DÞ�tDðS,DÞ ¼ K

�
�S

A
A þ 1

þ D
A

A þ 1

�

and

b0
D ¼ Z 0

D ¼ K
A

A þ 1

Here, ZD is a “virtual” second output that can be read out from
the system as shown in Figure 3B, and ZD’ is the sensitivity of
that output to a disturbance D.

With tD, bD, and sD, we are in a position to compute the buf-
fering parameters in the usual way as:

bD ¼ b0
D

s0
D

¼ Z 0
D

Y 0
D þ Z 0

D

and

BD ¼ b0
D

t0D
¼ Z 0

D

Y 0
D

If one takes a black-box approach to the system, limiting one-
self to the externally accessible parameters (inputs D and S,
and output Y) and assuming knowledge of the conversion
factor K, but not of the “virtual” output Z, one can express the
two buffering parameters alternatively as:

bD ¼ K�Y 0
D

K

and

BD ¼ K�Y 0
D

Y 0
D

In the context of control systems, buffering coefficient and
odds can be called more intuitively the “static disturbance re-
jection coefficient” and “static disturbance rejection odds”.
These two measures are denoted bD and BD in order to be un-
ambiguous about the independent variable. The static distur-
bance rejection coefficient bD represents a normalized sensitivi-
ty and thus described by a dimensionless number between 0
and 1 the fraction of an imposed change that was diverted or
rejected from a specific compartment. In this particular feed-
back-control system, bD has the specific value of bD=A/(A+1).
Analogously, the disturbance rejection odds reflect a dimen-
sionless number, the proportion between “transmitted change”
and “rejected change”, and yield an absolute ratio scale with
BD2R+ for A>0. In this particular system, the static distur-
bance rejection odds are BD=A.

Either one of these two parameters provides a rigorous
quantitative measure of “static disturbance rejection”. The
point is that static disturbance rejection represents a specific
and meaningful interpretation of the term “systems-level buf-

fering”, and is applicable to any system in which a disturbance
is related to an output in a defined way. For instance, the
mammalian genome contains multiple genes that encode vari-
ous membrane transporters for organic cations. Spontaneous
or experimental knock-out of one such transporter produces
only a partial reduction of the specific transport capacities and
a “mild” phenotypic effect. The redundancies in the system
provide the organism with “buffering” against such mutations,
or, synonymously, “disturbance rejection” (taking the mutations
as “disturbance”). For other proteins (e.g. the enzymes biotini-
dase or 11-b-hydroxylase), no such redundancies exist, and
single mutations can result in a complete loss of the associated
biological function and severe genetic disease. Provided that
the respective phenotype can be quantitated (e.g. by a specific
biological function such as transport or enzyme activity), one
may use our measures of “static disturbance rejection” to ex-
press numerically the extent of such “genetic” or “phenotypic
buffering”.

5. Buffering, “Conductance to Change”, and
Static Set-Point Tracking Power in Control
Systems

Next, we develop a measure of “static set-point tracking
power” in this feedback-control system (Figure 3C). To com-
pare systems with respect to this ability, we look at how the
system responds to changes in the set-point input S. This re-
sponse is again given by a sensitivity of the output Y(S,D), but
this time as the partial derivative with respect to the variable
S, that is, as :

Y 0
S ¼

@YðS,DÞ
@S

In this particular control system, this sensitivity has the value
K [A/(A+1)] . Thus, with a small value of the proportional feed-
back gain A, the set-point S has little or no effect on the
output Y. For large values of A, the impact of the set-point S
on the output Y will be greater and approach a maximum
value of K for A!¥.

For the analysis of set-point tracking, we took as sigma func-
tion sS the function that describes the relation between inputs
S and D expected in the absence of set-point buffering, that is,
the condition under which the set-point S translates perfectly
into corresponding changes of output Y, and where the sensi-
tivity YS’=K. In this particular system, this is the case when
feedback gain A!¥. In other systems, the “ideal” response to
a set-point change may obey different rules. In any case, it is
crucial to have an explicit expression for that response (which
may in principle be a nonlinear function of S and D). Impor-
tantly, if one does not know that expected unbuffered re-
sponse, it is not possible to quantify buffering action. In gener-
al, for the analysis of set-point tracking, we write the sigma
function as sS :(S,D)!Y*S(S,D). Here, we find that sS(S,D)=K·S.

The transfer function tS is the function that describes the re-
lation between inputs S and D and output Y for any given
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level of set-point buffering and for any A2R. Here, we find
that:

tS ¼ K

�
S

A
A þ 1

þ D
1

A þ 1

�

the sensitivity YS’ of the output Y to set-point changes follows
as:

Y 0
S ¼ K

A
A þ 1

The buffering function bS follows again from the equation
s(x)=y(x)+z(x) as:

bS ¼ K
S

A þ 1

In this particular control system, a read-out of its value can be
constructed as shown in Figure 3C. The sensitivity of this
output to set-point changes is given by:

Z 0
S ¼ K

1
A þ 1

With tS and bS and sS, it is straightforward to derive the param-
eters t and T as:

tS ¼
t0S
s0
S

¼ Y 0
S

Y 0
S þ Z 0

S

and

TS ¼
t0S
s0
S

¼ Y 0
S

Z 0
S

In a black-box approach, one may again determine these pa-
rameters alternatively as tS=YS’/K and TS=YS’/(K�YS’). The pa-
rameters tS and TS represent the wanted measures of “static
set-point tracking power”, or, synonymously, of “conductance
to change” on the systems level. In the control system shown
in Figure 3, we find that tS=A/(A+1) and TS=A.

This analysis leads to an interesting nontrivial statement
about control systems that employ proportional feedback. In
such a system, the two aspects of control quality, namely static
set-point tracking and static disturbance rejection, are always
of identical magnitude and depend in exactly the same way
on the feedback gain A. In contrast, when the feedback loop is
cut open, the resulting open-loop control is characterized by
zero disturbance rejection (@Y(S,D)/@D=K) and “amplifying”
set-point tracking (@Y(S,D)/@S=A·K).

A biologically relevant control task that can be analyzed in
these terms is the adaptive increase of muscle blood flow in
response to exercise. Here, we may take as the ideal response
that blood flow that exactly matches oxygen supply to oxygen
consumption. In this sense, the actual response may be indis-
tinguishable from the ideal one up to relatively high levels of
oxygen consumption, but will inevitably deviate from it as the

ability to increase muscle perfusion saturates. Our measures of
“set-point tracking” allow us to express numerically how well
the organism can track the shifting set-point (i.e. , muscle per-
fusion). Such numbers may serve to compare control quality at
various operating points (i.e. , exercise levels), between trained
and untrained individuals, etc.

6. Time-Dependent Buffering: “Dynamic
Disturbance Rejection” and “Dynamic
Set-Point Tracking”

Quite often, “good” control requires not only accuracy, but
speed as well. For instance, a voltage-clamp device must re-
spond quickly to a voltage step command in order to resolve
the fast currents produced by voltage-gated ion channels. In
animals, conditions such as acidosis, elevated blood pressure,
or hypoglycemia need to be counteracted within short time in
order to avoid seizures, organ damage, and—ultimately—
death. Speedy control is similarly important in social systems
plagued by high numbers of unemployed citizens or of crimi-
nals on the loose. Speed pertains to both aspects of control :
tracking a shifting set-point (e.g. , a change of command po-
tential by a voltage-clamp device) and rejection of fluctuating
disturbances (e.g. , an acid load, a sugar deficit, excess criminal-
ity, etc.). The respective aspects of control quality are termed
here “dynamic set-point tracking power” and “dynamic disturb-
ance rejection power”. Again what we need are ways to rigor-
ously express the quantitative aspect of these features.

First, we derive a measure of “dynamic disturbance rejection
power”. Reconsider the negative-feedback control system with
a fixed set-point S (Figure 3B). We impose a step change DD
of a disturbance input D, and observe the time course of the
output Y (shown schematically in Figure 4). We now ignore the
absolute magnitude of Y, and rather consider the deviation e(t)
of Y from its value Ybaseline before the step change, given as

Figure 4. Dynamic disturbance rejection in feedback-control systems. Upper
panel : With the set-point S fixed, the disturbance input of a system similar to
the one shown in Figure 3 B is instantaneously stepped to a new constant
value. Lower panel : The step change DD shifts the output Y instantaneously by
a specific amount e0, then negative feedback kicks in and pushes Y back to-
wards the set-point S. The duration and extent of the error e(t) are measured
by the integral e(t), whereas duration and extent of the “error reduction” m(t)
are measured by the integral m(t). “Dynamic disturbance rejection power” can
be expressed by a time-dependent buffering coefficient bD=m(t)/[e(t)+m(t)] or
buffering odds BD=m(t)/e(t). Analogously, one can find measures that express
the system’s ability to follow shifts of the set-point S.
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e(t)=Y(t)�Ybaseline. The step change DD produces an initial error
e0, given as e0=DD·K. Without control, this error will persist
forever: e(t)=const.=e0. In contrast, negative-feedback control
will tend to reduce the error e(t) over time. Note that in the
control system shown in Figure 3, the analytical solution would
yield instantaneous control ; in real systems, however, control
requires finite time because of finite time constants, time lags,
and less-than-infinite feedback gain. The corresponding analyt-
ical solutions are complicated and vary greatly between sys-
tems; the following statements are therefore made in a quali-
tative, generally valid way.

The faster and the more complete the error e(t) decreases,
the better the control quality. A good aggregate measure of
error magnitude and error duration is the integral e(e0,t)=R

t
0e(t)dt, a function of initial error and time.
There is another, equivalent way to look at the same proc-

ess. Rather than in terms of the “error” e(t), we can describe
the control process by following the “error reduction” m(t).
Herein, we define error reduction as m(t)=e0�e(t), that is, the
deviation of Y(t) from its value Y0 immediately after the step
change DD, before any compensation kicks in. An aggregate
measure of both magnitude and duration of this error reduc-
tion is the integral m(e0,t)=

R
t
0m(t)dt, again a function of initial

error and time.
For a given initial error e0 and a specified time t, overall “dis-

turbance rejection” correlates with the integral m(e0,t). Note
that this integral has particular physical dimensions, contingent
on the physical dimension of the output Y. However, it does
not make sense to quantitate “disturbance rejection” by means
of a unit that has the dimension of “charge” in one case, of
“volume” in another, etc. Rather, we want a single universal, di-
mensionless measure. Such a measure can be obtained by nor-
malization. Here, we normalize the integrated actually achieved
error reduction m(t) with respect to the theoretically achievable
maximum error reduction; this maximum is equivalent to the
error

R
t
0e0(t)dt=e0·t that would have been observed in the ab-

sence of any control. The resulting “proportion between a part
and the whole” is given as:

bDðtÞ ¼
mðe0,tÞ
ðe0 
 tÞ

This measure bD(t) represents the fraction of the disturbance
that was, on average during the chosen time window, “reject-
ed” or “buffered”; it is termed here the “dynamic disturbance
rejection coefficient” or “dynamic disturbance buffering coeffi-
cient” bD(e0,t).

An alternative, dimensionless measure of dynamic distur-
bance rejection is the proportion between error reduction inte-
gral m(e0,t) and error integral e(e0,t) ; this corresponds to the
proportion between the two parts of a whole. This proportion
is termed “dynamic disturbance rejection odds” or “dynamic
disturbance buffering odds” BD(t), and is given as:

BDðtÞ ¼
mðe0,tÞ
eðe0,tÞ

The dynamic disturbance rejection odds reflect dynamic dis-
turbance rejection by a dimensionless number on an absolute
ratio scale.

The dynamic variety of set-point tracking can be assessed
and compared if the disturbance input D is fixed at a constant
value, and the set-point input S is varied systematically, in a
similar manner to the arrangement shown in Figure 3C. A step
change DS causes the output Y to travel over time to a new
value. Without any disturbance input (D=0), the deviation e(t)
of Y from its initial value will approach a characteristic value
e0=S·K. This “error” is now a desired property of the control
system. In the presence of a fixed, non-zero disturbance D, the
error e(t) takes a different course, usually approaching e0 more
slowly and less completely. As compared to a given unbuffered
response e0 and at a given time t, the system response ideally
translates into an integral e(e0,t)=

R
t
0e(t)dt=e0·t ; in other

words, set-point tracking is perfect. Less than perfect set-point
tracking is reflected by an integral e(e0,t) that is smaller than
the product e0·t. Then, we also find that the time integral
m(e0,t)=

R
t
0m(t)dt of the error reduction m(t)=e0�e(t) has a

non-zero value. The greater the error integral e(e0,t), the great-
er is the “dynamic set-point tracking power” of the system. We
can express this quantity either as a proportion between one
part and the whole, namely in terms of the “dynamic set-point
tracking coefficient”

tSðtÞ ¼
eðe0,tÞ
ðe0 
 tÞ

or as a proportion between the two parts of a whole, namely
in terms of the “dynamic set-point tracking odds”:

TSðtÞ ¼
eðe0,tÞ
mðe0,tÞ

Interestingly, there is a strong formal and conceptual link be-
tween static and dynamic measures of systems-level buffering.
The static measures of disturbance rejection or set-point track-
ing are contained as special cases in the corresponding dy-
namic quantities. Namely, the dynamic, time-dependent mea-
sures will become identical to the static, time-independent
measures when we let integration time approach infinity and,
simultaneously, let the size of the initial step change of distur-
bance or set-point input approach zero.

7. Conclusion

In this article, we have derived a concept of “systems-level buf-
fering”, and ways to quantitate its various aspects, starting
from a seemingly abstract definition of “buffering”. Specifically,
buffering understood as “resistance to change” of a system
can be expressed quantitatively by means of the static or dy-
namic “disturbance rejection odds”. A corresponding “conduc-
tance to change” or compliance of a system can be measured
by static or dynamic “set-point tracking odds”.

In our examples, buffering was manifested as a system re-
sponse that was smaller than the unbuffered response. Al-
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though not worked out here explicitly, these units handle sys-
tems with responses that are greater than expected equally
well. We propose to call any deviation of the actual system re-
sponse from the unbuffered response “buffering”, irrespective
of its direction, and specify buffering further as “moderation”
(response smaller than expected) or “amplification” (response
greater than expected).

Systems biology as a quantitative discipline relies on the
formal language of mathematics, and this basis is completely
shared with, or borrowed from, general systems and control
theory. This means that our formal measures of static or dy-
namic “disturbance rejection” and “set-point tracking” are not
restricted to biological systems, but applicable to any type of
control systems. Albeit there is no shortage of measures of
control quality, the measures outlined here are unique and su-
perior inasmuch they provide scales of the highest possible
type for the measurement of disturbance rejection or set-point
tracking. With these dimensionless ratio scales, our concept of
buffering provides a single, universal and coherent framework
for the treatment of phenomena that were previously consid-
ered separate and unrelated. This unified approach to the
quantitation of buffering action exposes the common pattern
behind the different manifestations of buffering, linking phe-
nomena involving different physical quantities, or moderation
versus amplification, or static versus dynamic aspects of con-
trol. To say that the paradigms of “homeostasis”, “control”, and
“buffering” are inherently universal is not an airy common-
place. Our universal measures of buffering action substantiate
such a claim, and provide a framework that allows different ho-
meostatic mechanisms to be compared directly with respect to
their efficiency in the steady-state or during the transient
phase.

Keywords: buffering · control · scientific units · systems
biology · theoretical chemistry
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